p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.30C22, C4⋊Q8.8C2, (C2×C4).43D4, C8⋊C4.6C2, C4.18(C4○D4), C4⋊C4.21C22, (C2×C8).56C22, Q8⋊C4.7C2, C42.C2.3C2, (C2×C4).116C23, C22.112(C2×D4), (C2×Q8).23C22, C2.14(C4.4D4), C2.21(C8.C22), SmallGroup(64,172)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.30C22
G = < a,b,c,d | a4=b4=1, c2=b2, d2=b, ab=ba, cac-1=a-1, dad-1=ab2, cbc-1=b-1, bd=db, dcd-1=a2b-1c >
Character table of C42.30C22
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | complex lifted from C4○D4 |
ρ13 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ15 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ16 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 40 29 15)(2 37 30 12)(3 34 31 9)(4 39 32 14)(5 36 25 11)(6 33 26 16)(7 38 27 13)(8 35 28 10)(17 57 47 54)(18 62 48 51)(19 59 41 56)(20 64 42 53)(21 61 43 50)(22 58 44 55)(23 63 45 52)(24 60 46 49)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 59 5 63)(2 51 6 55)(3 57 7 61)(4 49 8 53)(9 47 13 43)(10 20 14 24)(11 45 15 41)(12 18 16 22)(17 38 21 34)(19 36 23 40)(25 52 29 56)(26 58 30 62)(27 50 31 54)(28 64 32 60)(33 44 37 48)(35 42 39 46)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,40,29,15)(2,37,30,12)(3,34,31,9)(4,39,32,14)(5,36,25,11)(6,33,26,16)(7,38,27,13)(8,35,28,10)(17,57,47,54)(18,62,48,51)(19,59,41,56)(20,64,42,53)(21,61,43,50)(22,58,44,55)(23,63,45,52)(24,60,46,49), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,59,5,63)(2,51,6,55)(3,57,7,61)(4,49,8,53)(9,47,13,43)(10,20,14,24)(11,45,15,41)(12,18,16,22)(17,38,21,34)(19,36,23,40)(25,52,29,56)(26,58,30,62)(27,50,31,54)(28,64,32,60)(33,44,37,48)(35,42,39,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,40,29,15)(2,37,30,12)(3,34,31,9)(4,39,32,14)(5,36,25,11)(6,33,26,16)(7,38,27,13)(8,35,28,10)(17,57,47,54)(18,62,48,51)(19,59,41,56)(20,64,42,53)(21,61,43,50)(22,58,44,55)(23,63,45,52)(24,60,46,49), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,59,5,63)(2,51,6,55)(3,57,7,61)(4,49,8,53)(9,47,13,43)(10,20,14,24)(11,45,15,41)(12,18,16,22)(17,38,21,34)(19,36,23,40)(25,52,29,56)(26,58,30,62)(27,50,31,54)(28,64,32,60)(33,44,37,48)(35,42,39,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,40,29,15),(2,37,30,12),(3,34,31,9),(4,39,32,14),(5,36,25,11),(6,33,26,16),(7,38,27,13),(8,35,28,10),(17,57,47,54),(18,62,48,51),(19,59,41,56),(20,64,42,53),(21,61,43,50),(22,58,44,55),(23,63,45,52),(24,60,46,49)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,59,5,63),(2,51,6,55),(3,57,7,61),(4,49,8,53),(9,47,13,43),(10,20,14,24),(11,45,15,41),(12,18,16,22),(17,38,21,34),(19,36,23,40),(25,52,29,56),(26,58,30,62),(27,50,31,54),(28,64,32,60),(33,44,37,48),(35,42,39,46)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
C42.30C22 is a maximal subgroup of
C42.(C2×C4) C8⋊C4.C4
C42.D2p: C42.239D4 C42.241D4 C42.244D4 C42.256D4 C42.258D4 C42.276D4 C42.277D4 C42.288D4 ...
C4⋊C4.D2p: C42.8C23 C42.9C23 C42.10C23 C42.367C23 C42.386C23 C42.389C23 C42.407C23 C42.409C23 ...
C42.30C22 is a maximal quotient of
C42.24Q8 C2.(C8⋊D4) (C2×Q8).109D4 (C2×C4).28D8
C42.D2p: C42.111D4 C42.124D4 C42.14D6 C42.71D6 C42.77D6 C42.14D10 C42.71D10 C42.77D10 ...
C4⋊C4.D2p: C4⋊C4.85D4 C4⋊C4.95D4 (C2×Q8).36D6 C40⋊8C4.C2 C56⋊C4.C2 ...
Matrix representation of C42.30C22 ►in GL6(𝔽17)
0 | 13 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 16 | 0 | 0 |
0 | 0 | 16 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 7 |
0 | 0 | 0 | 0 | 7 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
G:=sub<GL(6,GF(17))| [0,13,0,0,0,0,13,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,7,16,0,0,0,0,16,10,0,0,0,0,0,0,1,7,0,0,0,0,7,16],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,16,0,0,0,0,1,0,0,0] >;
C42.30C22 in GAP, Magma, Sage, TeX
C_4^2._{30}C_2^2
% in TeX
G:=Group("C4^2.30C2^2");
// GroupNames label
G:=SmallGroup(64,172);
// by ID
G=gap.SmallGroup(64,172);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,295,362,332,50,963,117,1444,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^2=b^2,d^2=b,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=a^2*b^-1*c>;
// generators/relations
Export
Subgroup lattice of C42.30C22 in TeX
Character table of C42.30C22 in TeX